

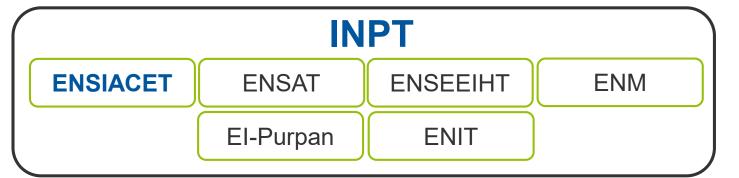
Laboratoire de Chimie Agroindustrielle (LCA) UMR 1010 INRA / INP-ENSIACET

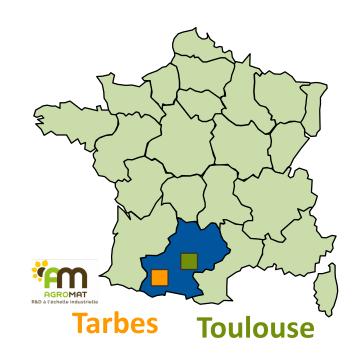
&

Centre D'Application et de Traitement des Agroressources (CATAR)

Justine CHERVIN
Ingénieur de recherche – Chef de projet chimie analytique

1^{er} Forum sur l'Instrumentation scientifique en physico-chimie à Toulouse





ENVIRONNEMENT DU LCA ET DU CATAR

Directrice: Pr. Sophie Thiebaud-Roux

Directeur Adjoint : Dr. Pierre-Yves Pontalier

Présidente : Pr. Sophie Thiebaud-Roux

Directrice: Dr. Christine Raynaud

Deux sites géographiques

- Toulouse : recherche académique & halle de transfert technologique
- **Tarbes** : plateforme de démonstration & pré-série pour Agromatériaux

ORIENTATIONS SCIENTIFIQUES DU LCA

Objectif général : Chaîne de valeur de la transformation durable de la biomasse dans un concept de bioraffinerie

Biomasse

Procédés : Fractionnement et/ou réaction et/ou réassemblage

Molécule/produit /matériau C Renouvelable

Marchés

Impacts environnementaux système/ Bilan éco-conception

- 1 équipe de recherche
- 4 thèmes scientifiques

T1

Fractionnement de la biomasse

P.Y. Pontalier

T2

Mise en œuvre des biopolymères

A. Rouilly

T3

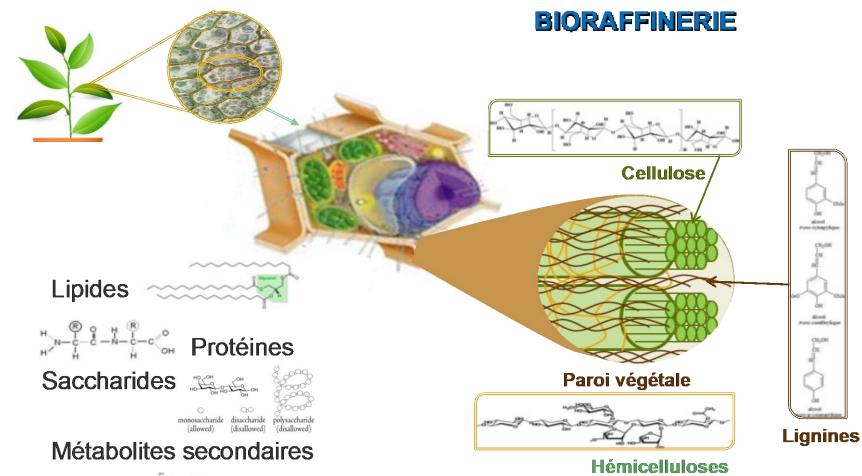
Réactivité chimique et conception de molécules biosourcées

P. De Caro et R. Valentin

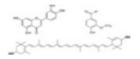
T4

Evaluation environnementale et Écoconception

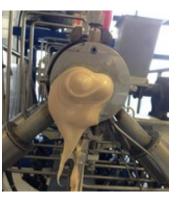
C. Sablayrolles



THÈME SCIENTIFIQUE T1


- Fractionnement de la biomasse
 - Déconstruction de la matière végétale
 - Purification des extraits : chromatographie, membranes

<u>Mots clés</u>: Biomasse, agroraffinage, fractionnement, purification, procédés, chimie verte, extraits, molécules


THÈME SCIENTIFIQUE T2

- Mise en œuvre de biopolymères Agromatériaux
 - Procédés de cuisson sous contrainte : extrusion-compoundage, injection-moulage, extrusion, thermo-compression
 - Encapsulation (extrusion bi-vis, atomisation...)
 - Caractérisation physico-chimique (analyse thermique et mécanique, rhéologie, sorption, morphologie, analyse de surface)
 - Assemblage des fibres (avec et sans liant)
 - 1 LabCom avec Authentic Material

<u>Mots clés</u>: Agro-matériaux, matériaux fonctionnels, cuisson, biomatériaux, isolants, thermo-compression, emballage biodégradable

Composites epoxy/lin pour l'aéronautique

Encapsulation par extrusion bi-vis

Panneaux de fibres basse densité

THÈME SCIENTIFIQUE T3

Réactivité chimique et conception de molécules biosourcées

Design de bioproduits

 Approche de formulation inverse via outil CAMD : briques biosourcées + modèles de propriétés / Design de composés purs ou mélanges (solvants)

Réactivité de molécules biosourcés pour l'obtention de bioproduits

- Chimie verte : dérivés d'huiles végétales (acides gras/glycérol), acides fermentaires...
- Composés purs ou systèmes multi-constituants (milieux bruts couplage Extraction/Réactions)
- Activation par des technologies spécifiques : Ultrasons...

Fonctionnalisation de polymères naturels

Modification chimique de polymères naturels : dérivés lignocellulosiques et protéines

◆ Développement de méthodes analytiques

- Méthodes à développer pour l'identification des bioproduits et co-produits synthétisés
- Suivi en ligne : NIR, IR, RAMAN

Mots clés: Chimie verte, synthèse, biomolécules, bioproduits, procédés, réactivité, lipochimie, caractérisation, génie analytique

THEME SCIENTIFIQUE T4

- Evaluation environnementale et Ecoconception
 - Développement et application de méthodologies d'évaluation et d'intégration

de l'Environnement en écoconception : ACV

Ingénierie inverse : CAMD, modélisation

- Apport méthodologique pour l'Analyse de Cycle de Vie
 - ◆ Verrou : Obtention et collecte des données Évaluation de technologies emergentes Changement d'échelle
 - ◆ Levier : Couplage approches modélisation, simulation, données massives
 - Verrou : Biosourcé Amont agricole Sequestration du C Multifonctionnalité
 - ◆ Levier : Typologie d'Analyse de Cycle de Vie attributive, consécutive

MISSIONS DU CATAR

- Anticiper les problématiques industrielles d'avenir par actions de R&D
- Accompagner les PME/PMI dans leur projet d'innovation et de transfert
- Stimuler l'émergence et la réalisation de projets innovants

→ Projets R&D&I collaboratifs

- Etudes de faisabilité
- Développements
 - procédés innovants
 - méthodes analytiques

Etude technico-économique

- Bilan matière
- Bilan énergétique
- Données pour étude ACV
- Données pour étude de marché

Veille & Formation

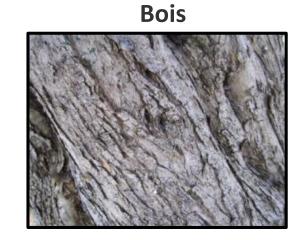
- Actions de ressourcement
- Diffusion technologique
- Conseil technologique

前**@ Etudes pilotes**

- Scale-up
- Transfert de technologies
- Pré-production d'agro-produits

	Test système, lancement et réindustrialisation		TRL 9	Système réel achevé et qualifié par des missions opérationnelles réussies
	Développement système/sous-système		TRL 8	Système réel achevé et qualifié par des tests et des démonstrations
	Démonstration de la technologie		TRL 7	Démonstration d'un prototype du système dans un environnement opérationnel
		_	TRL 6	Démonstration d'un prototype ou modèle de système/sous-système dans un environnement représentatif
	Développement de la technologie Recherche et démonstration faisabilité		TRL 5	Validation de composants et/ou de maquettes en environnement représentatif
			TRL 4	Validation de composants et/ou de maquettes en laboratoire
			TRL 3	Preuve analytique ou expérimentale des principales fonctions et/ou caractéristiques du concept
	Recherche technologique fondamentale		TRL 2	Concept technologique et/ou applications formulés
		_ (TRL 1	Principes de base observés ou décrits

QUELLES MATIÈRES PREMIÈRES ?


Oléagineux

Plantes aromatiques

Plantes à fibres

Plantes à sucres

Pré/Posttraitement

Lyophilisateur pilote à plateaux

Centrifugeuse

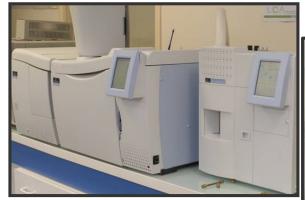
Broyeur à couteaux

+ autres (marteaux, ..)

Déchiqueteur

Atomiseur

Extrudeur bi-vis


Réacteur ultrasons

Membranes ultrafiltration et nanofiltration

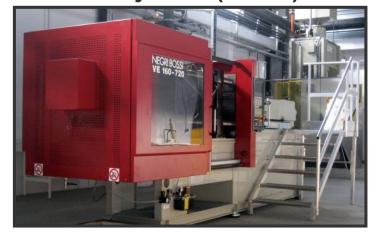
Unité pilote d'extraction/concentration

Chromatographie

Réactivité chimique Lipochimie

Unités d'extraction/concentration/purification

Réacteur ultrasons



Mise en forme

Presse à injecter (160 T)

Presse à granuler

Thermopresse (400T)

Extrudeur bi-vis

Caractérisation

GENIE ANALYTIQUE

Propriétés physiques, thermiques, mécaniques (traction, DSC, absorption eau, IR, ...)

Vieillissement

Spectrométrie

Analyse sensorielle

Chromatographie

GC HPLC SEC HPIC HPTLC

Analyse gravimétrique

Thématique COV

Étude des émissions de COV de panneaux de bois (thèse Elise Bertheau)

Echantillonnage des COV

Poudre dans coupelle en aluminium Panneaux de bois sans liant

Adsorbant

cartouche Tenax TA®

- → 20-30 min
- \rightarrow COV (C₅-C₂₂))

Microchambres

(ex: 23 °C, 50 % HR)

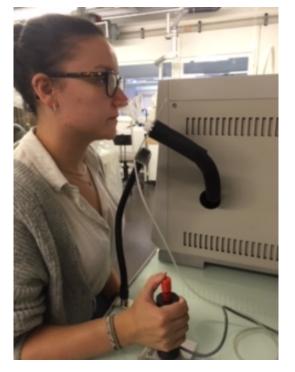
Thermodésorption GC-FID/MS

- Annotation(base de données NIST + indice de rétention)
- Quantification(en équivalent toluène)

Thématique Arôme et Métrologie Sensorielle

Principe

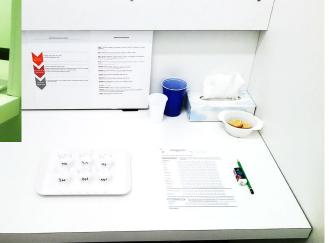
- Analyse Olfactométrique (détecteur ODP) + couplage à l'analyse CPG-FID et/ou CPG-SM
- Experts ou panel sensoriel
- Echantillonnage HS statique/dynamique-SPME-StirBar
- Bouche artificielle (Brevet Wageningen)


Objectifs

- Repérage molécule/odeur parasite ; molécule/activité odorante
- Authentification chimique
- Profil aromatique d'un extrait : aromagramme
- Mesure **seuils** de perception/reconnaissance des odeurs

Monoposte

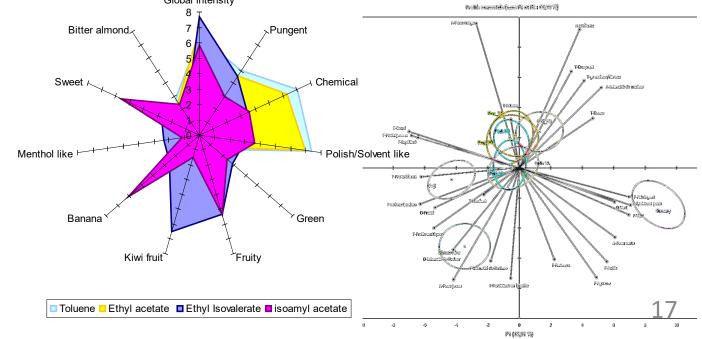
Bi-postes simultanés

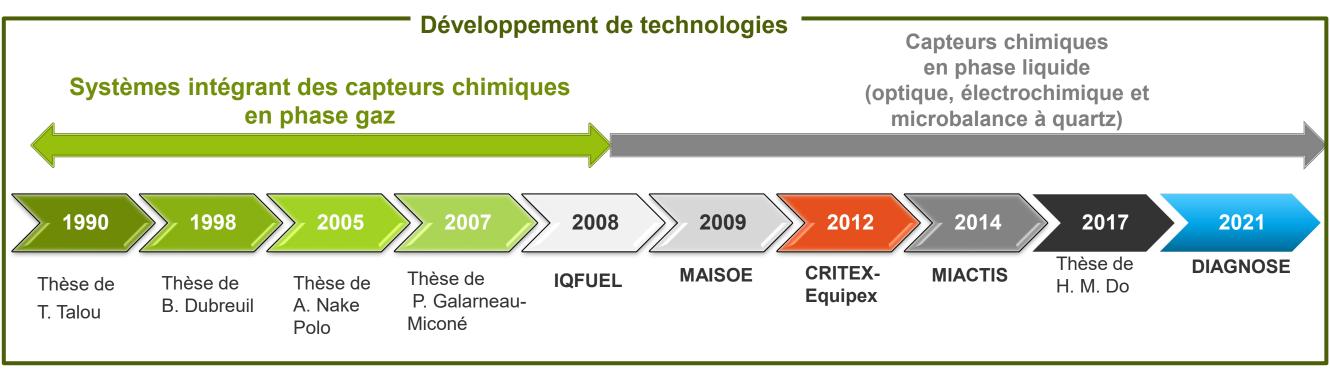


Thématique Arôme et Métrologie Sensorielle

Panel interne

Salle de préparation, focus groupe, 4 boxes individuels Analyses discriminantes/Analyses Quantitatives Descriptives





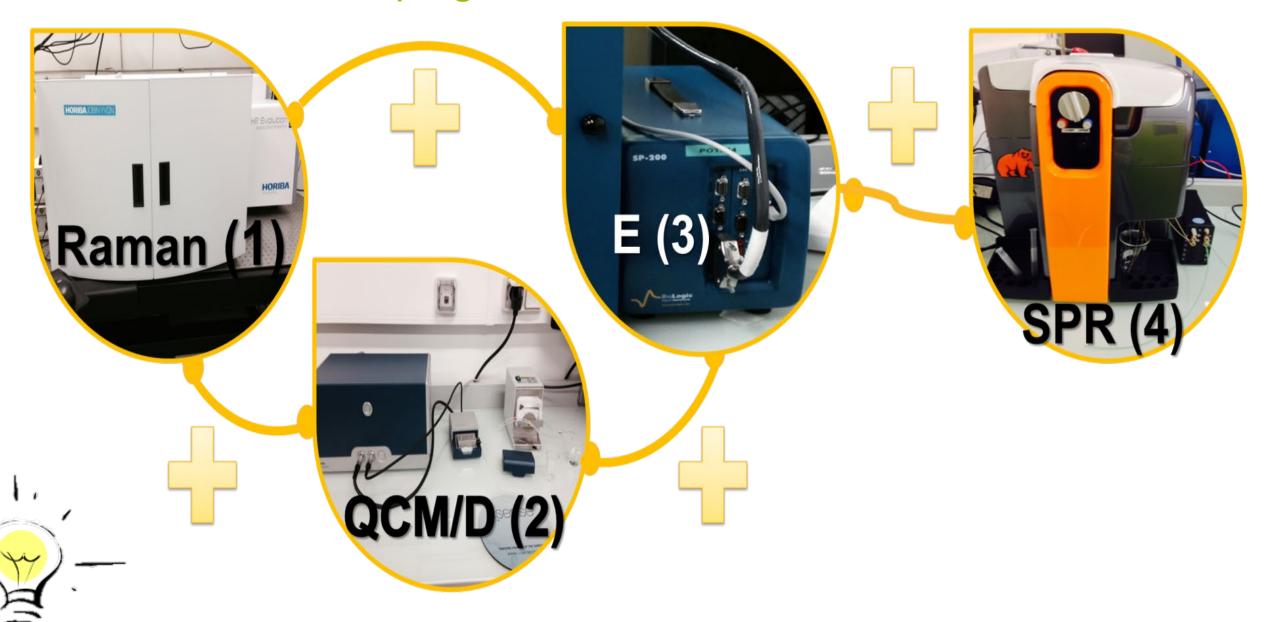
PLATEFORME CRITEX-EQUIPEX DU LCA: PARC INSTRUMENTAL POUR LA CARACTÉRISATION CHIMIQUE DE LA MATIÈRE ET L'ÉTUDE D'INTERACTIONS (MILIEU/CAPTEURS CHIMIQUES)

HISTORIQUE

Plateforme CRITEX-EQUIPEX

Salle dédiée

- Microspectroscopie Raman (LabRAM HR evolution, HORIBA Ltd)
- Microbalance à cristal de quartz avec mesure de dissipation (QCM/D) (Q-Sense Explorer, Biolin Scientific Ltd)
- Potentiostat à bas-courant avec option impédance (E) (Biologic scientific)
- Système à résonance de plasmon de surface (SPR) (Bionavis)

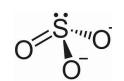


Plateforme CRITEX-EQUIPEX

Couplage de méthodes

Căractérisation in-situ et en temps réel des cinétiques d'interactions de surface (couche sensible – composé cible ; couche sensible - substrat), détection multimodale

Filière VITI/VINI


Distillerie

Valorisation des tartrates Valorisation des co-produits de distillerie

VINOsulfite

Recherche d'extraits actifs pour substituer le SO₂ en viniculture

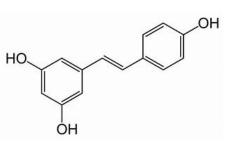
Vin

CLE CASSIS

Suivi olfactométrique d'arômes caractéristiques du vin

NatSubMidWine

Suivi de molécules d'intérêt dans des cépages occitans



Vigne

B₂V

Bioraffinerie de bois de vigne Substitut aux traitements phytosanitaires

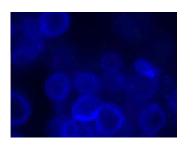
Mondin

Valorisation des marcs de raisin en matériaux pour l'industrie du luxe

Coproduits

FRACTIONNEMENT

MÉTHODOLOGIE ANALYTIQUE



Filière produits de la mer Domaine Economie Bleue

Colorinat

Production de colorants à partir de micro-algues

SARGOOD

Valorisation des Sargasses

Landfeed

Production de fertilisants biosourcés issus de coproduits animaux

Bio-raffinerie des microalgues

Co-produits (mytiliculture, pêche, ...)

Sea2Land

Production de fertilisants biosourcés issus des déchets de la pêche

Développement de biostimulants à partir de microalgues

VPM

Valorisation des Petites Moules (arôme alimentaire, matériaux)

ADEME

Identification des voies de valorisation des coquilles d'huîtres

Projet CYCLALG (2016-2019)

- Proposer un système basé sur l'Economie Circulaire, où les déchets générés sont utilisés comme nutriments dans le même processus de culture
- **Diversifier les produits** à valeur ajoutée obtenus dans les secteurs des industries chimique, énergétique, cosmétique, agricole et alimentaire.
- Créer une Carte Dynamique afin d'identifier les ressources, les compétences et les activités afin de stimuler la symbiose industrielle par la coopération transfrontalière et la complémentarité des activités économiques.

Contexte

- Amidon blé, canne à sucre, colza, tournesol
- Concurrence avec l'alimentation humaine
- Biocarburant Second génération
 - Ressources lignocellulosiques
- Biocarburant Troisième génération
 - Microalgues ?? Scale-up ?

- Problèmes des cultures autotrophes à grande échelle (faible teneur en lipides)
- Faible concentration de biomasse
- Problèmes d'extraction par solvant

Projet collaboratif avec le même consortium

- Bioraffinage des cultures de microalgues autotrophes
- Mise en place des méthodes de caractérisation de composés à haute valeur ajoutée
- Vitesse de production et rendements lipidiques élevés chez certaines variétés à l'échelle laboratoire
- La qualité du biodiesel obtenu est liée à la quantité de lipides dans la microalgue (>30% sur MS)

Construire un bioraffinage des microalgues en cultures hétérotrophes pour améliorer la viabilité économique des biocarburants

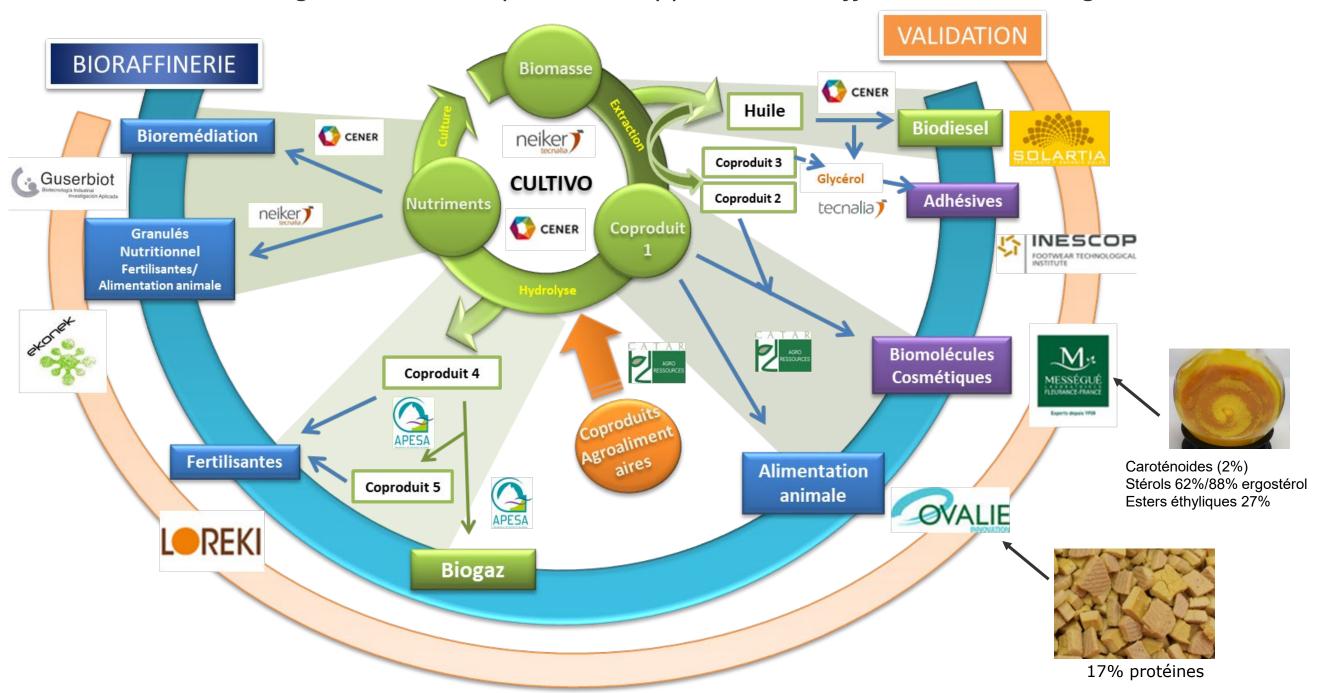
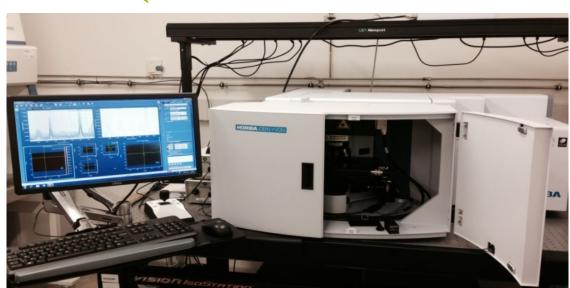


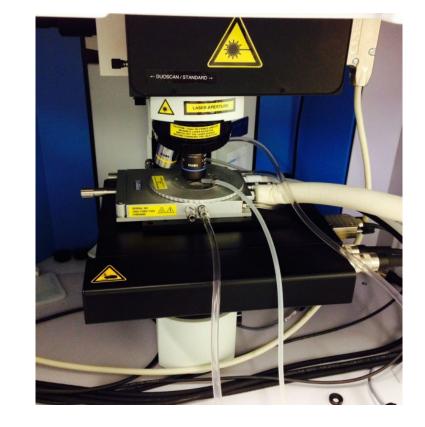
Schéma de fractionnement

Technologies innovantes pour développer une bioraffinerie de microalgues

CYCLALG: Un réseau de 6 centres R&D pour développer une bio raffinerie autour des microalgues

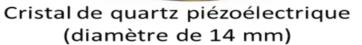
Merci de votre attention


Microscope Raman (LabRAM HR evolution, HORIBA Ltd)


Principe

- Basé sur le phénomène des vibrations des liaisons entre les atomes en réponse à une excitation lumineuse
- Diffusion inélastique de lumière par les molécules

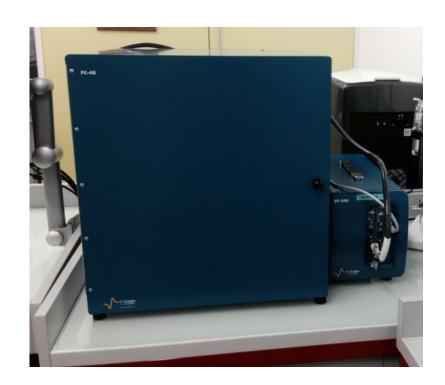
- 2 Lasers: 532 et 785 nm
- 5 objectifs: (x10, x50LWD, x60W, x100, X100-Oil)
- 4 réseaux (résolution): 1800, 1200, 300 tr/mm
- Platine xyz
- Cellule à température contrôlée (-160 à 600°C)
- Cellule à humidité contrôlée
- Sonde à fibre optique
- Support de cuve en quartz
- Cellule électrochimique
- Analyse de particules


Microbalance à cristal de quartz avec mesure de dissipation (QCM/D) Q-Sense Explorer, Biolin Scientific Ltd

Principe de la Microbalance à Quartz à Dissipation (QCM-D)

- 1. Oscillation du Cristal de Quartz soumis à un champ électrique alternatif
- 2. Fréquence de Résonance dépendante de la masse et des propriétés mécaniques du cristal et de toute substance attachée à sa surface.
- 3. Adsorption et Variation de Masse : l'adsorption de molécules se liant ou se déposant modifie la masse du cristal et induit un changement de fréquence proportionnel.
- 4. Mesure de la Dissipation (D) par observation de la décroissance de l'amplitude de l'oscillation, elle est liée à la viscoélasticité de la couche adsorbée.

Cellule électrochimique

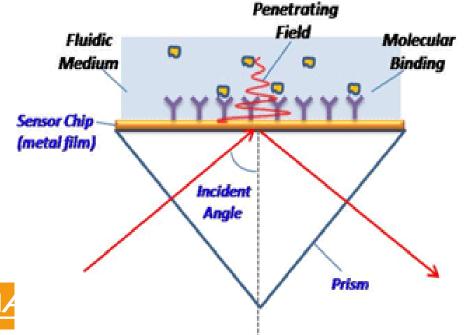

Potentiostat à bas-courant avec option impédance (SP-200, Bio-Logic Science Instruments)

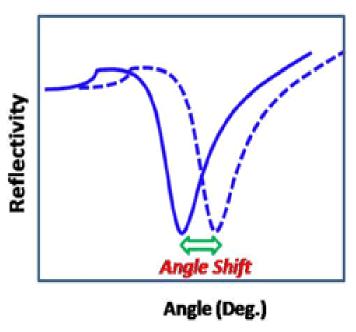
Principe

- Etude des phénomènes électrochimiques.
- Dépôt électrochimiques pour la fonctionnalisation d'électrodes

Caractéristiques

- Tension Contrôle : ±10 V
- Gammes de courant : 500 mA à 1 μA (10 nA avec gain)
- Résolution de courant 760 fA
- Faible courant : 6 gammes de 100 nA à 1 pA avec une résolution de76 aA





Système à résonance de plasmon de surface (SPR)) (MP-SPR Navi™ 200 OTSO, BioNavis Ltd)

- Détection de modifications de l'indice de réfraction à la surface d'un capteur métallique, généralement une fine couche d'or, en réponse à l'adsorption ou la liaison de molécules.
- 2 mesures de longueur d'onde indépendantes permettant de détecter les changements d'épaisseur et d'indice de réfraction ou de conformation
- Large gamme d'angle de mesure 40°-78° permettant la mesure de petite molécules à des macromolécules.
- Cellule électrochimique disponible

