Université Paul Sabatier, Toulouse III; Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique (SPCMIB, UMR CNRS 5068), 118, route de Narbonne, F-31062 Toulouse cedex 9, France, https://spcmib.univ-tlse3.fr/
e-mail: eric.benoist@univ-tlse3.fr
Among elements from the Group 7, the coordination chemistry of technetium and rhenium has received considerable attention over the last three decades. This is mainly due to the wide range of their oxidation states (varying from -I to +VII) and consequently the possibility of developing numerous chelating systems able of stabilising the most stable oxidation states (+I, +III and +V). In addition, the corresponding metal complexes have gained an increased level of interest as catalysts or photocatalysts, imaging agents (luminescent probes) or therapeutic probes (PhotoCORM or radiopharmaceuticals).[[1]]
Through selected examples developed in our team, we will detail (i) the synthetic strategies used for the preparation of new chelating structures specific for rhenium (and technetium), with a focus on the pyridinetriazole pincer (called pyta), (ii) the formation and characterisation of the corresponding metal complexes as well as (iii) their potential applications as diagnostic tools (luminescent and/or nuclear probes) or therapeutics (radiopharmaceuticals or anticancer agents).[[2]]
Key words : Multifunctional chelating agent, Click chemistry, Radiopharmaceutique, PhotoCORMs, Anti-microbial or anti-cancer probes.
References
[1] (a) A. Leonida, G. Gasser, ACS Chem. Biol. 2014, 9, 2180-2193; (b) S. Ajay Sharma, N. Vaibhavi, B. Kar, U. Das, P. Paira, RSC Adv. 2022, 12, 20264-20295; (c) K. Schindler, F. Zobi, Molecules 2022, 27, 539; (d) A. Frei, A. D. Verderosa, A. G. Elliott, J. Zuegg, M. A. T. Blaskovich, Nat. Rev. Chem., 2023, 7, 202-224.
[2] (a) A. François, C. Auzanneau, V. Le Morvan, C. Galaup, H.S. Godfrey, L. Marty, A. Boulay, M. Artigau, B. Mestre-Voegtlé, N. Leygue, C. Picard, Y. Coulais, J. Robert, E. Benoist, Dalton Trans. 2014, 43, 439-450; (b) R. Eychenne, S. Guizani, J.-H. Wang, C. Picard, N. Malek, P.-L. Fabre, M. Wolff, B. Machura, N. Lepareur, E. Benoist, Eur. J. Inorg. Chem. 2017, 69-81; (c) J.-H. Wang, B. Delavaux-Nicot, M. Wolff, S. Mallet-Ladeira, R. Métivier, E. Benoist, S. Fery-Forgues, Dalton Trans. 2018, 47, 8087-8099; (d) A. H. Mejías, A. Poirot, M. Rmili, N. Leygue, M. Wolff, N. Saffon-Merceron, E. Benoist, S. Fery-Forgues, Dalton Trans. 2021, 50, 1313-1323; (e) Y. Aimene, R. Eychenne, F. Rodriguez, S. Mallet-Ladeira, N. Saffon-Merceron, J.-Y. Winum, A. Nocentini, C. T. Supuran, E. Benoist, A. Seridi, Crystals 2021, 11, 1076; (f) Z. Ourdjini, K. Kraim, J.-Y. Winum, E. Benoist, A. Seridi, J. Mol. Struct. 2023, 1282, 135211; (g) V. Guilbaud, M. Goizet, N. Leygue, A. Poirot, S. Mallet-Ladeira, C.-L. Serpentini, T.-S. Ouk, G.M.A. Ndong Ntoutoume, V. Sol, E. Benoist, S. Fery-Forgues, J. Photochem. Photobiol. A 2024, 453, 115600.