Nuclear Magnetic Resonance (NMR)

LCC

Service overview

The mission of the NMR facility is to provide scientific and technical expertise in NMR spectroscopy and to provide users with open-access to a range of functional equipment. In particular, the facility carries out and interprets NMR spectra on specific problems. It can carry out detailed studies as part of scientific collaborations or service deliveries. It is also responsible for the maintenance of the spectrometers, training and assistance to users of open-access equipment.

The NMR service is open to researchers from outside the laboratory and from the private sector. The service is part of the “RMN Midi-Pyrénées” network.

Service members

Ingénieur de Recherche

COPPEL Yannick

Ingénieur de Recherche

BIJANI Christian

Ingénieur d’étude en chimie analytique

BONNET Antoine

MATUS Tetiana
Etudiante

MATUS Tetiana

PARYL David
Responsable informatique et technique du libre-service RMN

PARYL David

Ingénieur de Recherche

COPPEL Yannick

Numéro ORCID : 0000-0003-0970-4082

Après une formation universitaire en sciences chimiques, j’ai obtenu un doctorat de chimie (1996) au LEDSS de Grenoble (Etude RMN/modélisation moléculaire d’interactions oligonucléotide abasique- ligands). J’ai ensuite effectué un post-doctorat (Prof.  Opella , Université de Pennsylvanie, Philadelphie, USA, 1997-98) portant sur l’étude RMN de la structure d’une protéine membranaire. En 1998, j’ai été recruté comme ingénieur de recherche CNRS pour prendre la responsabilité du service RMN du LCC.

Email:yannick.coppel(at)lcc-toulouse.fr

Téléphone:05.61.17.54.27

Bureau:IPBS 030

Ingénieur de Recherche

BIJANI Christian

Numéro ORCID : 0000-0003-3989-3021

Après un Master 1 en chimie organique à Montpellier, Christian a effectué une thèse CIFRE en collaboration entre une startup Bordelaise et le CBMN dirigé par Erick Dufourc. Son travail de Doctorat avait pour objectif la formulation de biomolécules et leur étude structurelle par RMN.
Passionné de RMN, c’est tout naturellement qu’il occupe actuellement un poste d’Ingénieur de Recherche dans le service de RMN du LCC.
Domaines d’expertises : Maintenance, suivi et réalisation d’expériences RMN en accord avec les domaines de la chimie développés au LCC et dans l’Institut de Chimie de Toulouse

Email:christian.bijani(at)lcc-toulouse.fr

Téléphone:05.61.17.54.27

Bureau:IPBS 030

Ingénieur d’étude en chimie analytique

BONNET Antoine

Email:antoine.bonnet(at)lcc-toulouse.fr

Email libre-service:rmn-libre-service(at)lcc-toulouse.fr

Téléphone:05.61.17.54.30

Bureau:IPBS 033

Etudiante

MATUS Tetiana

Email:tetiana.matus(at)lcc-toulouse.fr

Téléphone:05.61.17.54.27

Bureau:IPBS

Responsable informatique et technique du libre-service RMN

PARYL David

Email:david.paryl(at)lcc-toulouse.fr

Téléphone:05.61.17.54.30

Bureau:IPBS 033

Equipments

4 NMR spectrometers Bruker in open-access

Bruker NMR spectrometers Avance 300, Avance 400, 2 Avance III 400 (PDF file), 3 of which are equipped with autosamplers. Realisation of 1D experiments (1H, 13C, 31P, 11B, …), 2D experiments (COSY, HMQC, HMBC, NOESY…) and variable temperature experiments.
Note the possibility of carrying out experiments with double decoupling: 13C with 1H and 31P decoupling, HMQC 1H-13C with 31P decoupling…).

Bruker Avance III 400 Wide-Bore for solid-state NMR

Equipments:

  • 4mm triple resonance probe MAS H-F/X/Y with insert 31P / 65Cu – 29
  • 4mm double resonance probe MAS H/X low gamma (109Ag – 13C)
  • 2mm double resonance probe MAS H-F/X (15N – 31P)
  • 5mm double résonance probe MAS H-F/X (13C – 31P)
  • 3mm double résonance probe MAS H/X (15N – 31P)
  • 5mm goniometric probe H/X (15N – 31P)
  • Variable temperature unit (BCUII + Nitrogen exchanger)

Bruker Avance NEO for liquid or solid-state NMR

Equipments:

  • 5mm broadband inverse triple-resonance probe

1H, BB(31P-103Rh)/31P with Z field gradients

 

  • 2mm double resonance CPMAS H/X high gamma (31P – 15N)

 

  • 2mm double resonance CPMAS H/X low gamma (15N – 109Ag)

 

  • Variable temperature unit (BCUII and nitrogen vaporization)

Services

Application form for high-resolution liquid NMR experiments (Analyses RMN liquide)
Application form for solid-state NMR experiments (Analyses RMN solide)

Rates: Contact us

The service applies a certified full-cost pricing system that allows the invoicing of services in research projects financed by public third parties (ANR, EU, etc.).

Application fields

NMR (Nuclear Magnetic Resonance) is a non-destructive chemical analysis technique commonly used to determine the molecular composition and purity of a sample.

It allows the identification of molecules, the determination of their structure and the study of some of their physical properties in solution or in the solid state (change of conformation, phase, solubility, size…).

This facility offers a wide range of services that can be integrated into your R&D projects in a wide variety of scientific fields (materials, organic chemistry, catalysis, natural products, etc.). Today, we carry out NMR measurements for more than twenty public or industrial laboratories.

 The NMR facility can offer you solutions ranging from simple access to NMR spectrometers for routine controls to the complete handling of your samples by our engineers (preparation of samples for analysis, performance of measurements, interpretation of results, drafting of an analysis report, etc.). Any service will be subject to a detailed quote that we will draw up according to your needs.

Application examples:

Monitoring of chemical syntheses

  • Chemical composition of a reaction mixture
  • Quality control of production
  • Detection and characterisation of impurities

Determination of the molecular structure

  • Study of the three-dimensional shape of molecules
  • Identification of original molecules, bioactive molecules (antibiotics, antifungals…), natural products…

Study of materials or insoluble products

  •  Crystalline (polymorphism) or amorphous form
  • Absorption of molecules on silicas, zeolites…
  • Arrangement of molecules in the solid-state
  • Natural products (wood, bone…)
  • Gel, liquid crystals
  • Aging/modification of materials
T

Study of dynamic phenomena

  • Study of reaction mechanisms (kinetic and thermodynamic study, reaction intermediates)
  • Isotope exchange

Study of molecular interactions

  • Study of direct or reverse micelles, vesicles, liposomes
  • Study of association phenomena, aggregation, polymerisation…

Polymer study

  • Linear or branched form, in solution or solid state
  • Structure of the units
  • Polydispersity index
  • Average molecular weight and size

Feasible experiments

Liquid -state samples:

– A lot of different nucleus can be studied: 1H, 2H, 7Li, 11B, 13C, 15N, 19F, 27Al, 29Si, 31P, 51V, 103Rh, 109Ag, 113Cd, 119Sn, 195Pt…
– 1D and 2D triple-resonance experiment can be run: 1H/31P/X (X {1H, 31P}, 31P {1H, X} and 1H {31P, X}). In addition triple resonance experiment 1H/13C/X et 1H/13C/15N/2H can be done on the spectrometers of « Midi-Pyrénées » NMR network.
– 1D multi-pulses experiments with gradient fields and selective pulses: DEPT, INEPT, T1 and T2  measurements, 1D TOCSY, 1D NOESY, 1D-HSQC, solvent suppression, 1D quantitative…
– 2D homo- and hetero-nuclear experiment: COSY, NOESY, TOCSY, ROESY, EXY, HMQC, HSQC, HMBC, ADEQUATE…
– 2D experiment with homonuclear 1H decoupling (pure-shift, psyche, ZS, HOBS…)
– DOSY experiment for self-diffusion coefficient measurement.
– Variable temperature (-100°C à +100°C).

    Solid -state samples:

    – A lot of different nucleus can be studied: 1H, 2H, 11B, 13C, 15N, 17O, 19F, 29Si, 31P, 33S, 35Cl, 51V, 77Se, 79Br, 107Ag, 113Cd,…
    – Triple-resonance experiment can be run:  1H/31P/13C and 1H/19F/X
    – 1D experiments: 1H/19F-X CP et CP quantitative, X{1H} HPDEC, INEPT, spectral edition, X CPMG et CP-CPMG, REDOR
    – 2D experiments: 1H-19F/X HETCOR, HMQC, MQMAS, 2D DQMAS, NOESY-RFDR, 2D CRAMPS….
    – Study of dynamic phenomena: relaxation time measurement (T1, T2, T), dipolar coupling and CSA measurement…
    – Variable temperature (-60°C à +100°C)

    Publications

    2024
    2023

    An experimental and computational investigation rules out direct nucleophilic addition on the N2 ligand in manganese dinitrogen complex [Cp(CO)2Mn(N2)]
    Le Dé Q., Bouammali A., Bijani C., Vendier L., Del Rosal I., Valyaev D. A., Dinoi C., Simonneau A.
    Angewandte Chemie, International Edition 2023, 62(40), e202305235/1-10.
    https://doi.org/10.1002/anie.202305235
    https://hal.science/hal-04159061

    Spin crossover in mixed-anion Fe(NH2trz)3(BF4)(SiF6)0.5 crystalline rod-shaped particles: the strength of the solid–liquid post synthetic modification
    Yang X., Enriquez-Cabrera A., Toha D., Coppel Y., Salmon L., Bousseksou A.
    Dalton Transactions 2023, 52(30), 10828-10834.
    http://dx.doi.org/10.1039/D3DT02003G
    https://hal.science/hal-04174161

    Gelation mechanism revealed in organometallic gels: Prevalence of van der Waals interactions on oligomerization by coordination chemistry
    Wang Y., Coppel Y., Fitremann J., Massou S., Mingotaud C., Kahn M. L.
    ChemPhysChem 2023, 24(14), e202300077/1-7.
    https://doi.org/10.1002/cphc.202300077
    https://hal.science/hal-04123076

    N-heterocyclic carbene-iridium complexes as photosensitizers for in vitro photodynamic therapy to trigger non-apoptotic cell death in cancer cells
    Wang X., Zhang C., Madji R., Voros C., Mazères S., Bijani C., Deraeve C., Cuvillier O., Gornitzka H., Maddelein M.-L., Hemmert C.
    Molecules 2023, 28(2), 691/1-29.
    https://doi.org/10.3390/molecules28020691
    https://hal.science/hal-03870710

    Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: Relevance for reshaping zr-carboxylate coordination adaptable networks
    Murali M., Bijani C., Daran J.-C., Manoury E., Poli R.
    Chemical Science 2023, 14(30), 8152-8163.
    http://dx.doi.org/10.1039/D3SC02204H
    https://hal.science/hal-04155107

    Mechanochemical studies on coupling of hydrazines and hydrazine amides with phenolic and furanyl aldehydes-hydrazones with antileishmanial and antibacterial activities
    Kapusterynska A., Bijani C., Paliwoda D., Vendier L., Bourdon V., Imbert N., Cojean S., Loiseau P. M., Recchia D., Scoffone V. C., Degiacomi G., Akhir A., Saxena D., Chopra S., Lubenets V., Baltas M.
    Molecules 2023, 28(13), 5284/1-26.
    https://doi.org/10.3390/molecules28135284
    https://hal.science/hal-04157067

    Effect of oxygen poisoning on the bidirectional hydrogen electrocatalysis in TaS2 nanosheets
    Ghorbani Shiraz H., Ullah Khan Z., Péré D., Liu X., Coppel Y., Fahlman M., Vagin M., Chmielowski R., Kahn M. L., Berggren M., Crispin X.
    The Journal of Physical Chemistry C 2023, 127(12), 5825-5832.
    https://doi.org/10.1021/acs.jpcc.3c00825
    https://hal.science/hal-04342072

    Synthesis and coordination of a bisphosphine-[NHC-borane] compound: A ligand framework for bimetallic structure featuring a boron-bridging moiety
    Camy A., Vendier L., Bijani C., Fernández I., Bontemps S.
    Inorganic Chemistry 2023, 62(23), 9035-9043.
    https://doi.org/10.1021/acs.inorgchem.3c00785
    https://hal.science/hal-04169429

    Ultra-high-field 67Zn and 33S NMR studies coupled with DFT calculations reveal the structure of ZnS nanoplatelets prepared by an organometallic approach
    Bellan E. V., Maleki F., Jakoobi M., Fau P., Fajerwerg K., Lagarde D., Balocchi A., Lecante P., Trébosc J., Xu Y., Gan Z., Pautrot-d’Alençon L., Le Mercier T., Nagashima H., Pacchioni G., Lafon O., Coppel Y., Kahn M. L.
    The Journal of Physical Chemistry C 2023, 127(36), 17809-17819.
    https://doi.org/10.1021/acs.jpcc.3c02754
    https://hal.science/hal-04271597

    Functionalization of graphene oxide surfaces with phosphorus dendrimer and dendron
    Alami O., Laurent R., Tassé M., Coppel Y., Collière V., Bignon J., Majoral J.-P., El Kazzouli S., El Brahmi N., Caminade A.-M.
    FlatChem 2023, 42, 100564/1-12.
    https://doi.org/10.1016/j.flatc.2023.100564
    https://hal.science/hal-04268533

    “Click” chemistry for the functionalization of graphene oxide with phosphorus dendrons: Synthesis, characterization and preliminary biological properties
    Alami O., Laurent R., Tassé M., Coppel Y., Bignon J., El Kazzouli S., Majoral J.-P., El Brahmi N., Caminade A.-M.
    Chemistry – A European Journal 2023, 29(66), e202302198/1-10.
    https://doi.org/10.1002/chem.202302198
    https://hal.science/hal-04269848

    2022

    Dentin interaction with universal adhesive containing isopropanol solvent studied by solid-state NMR spectroscopy
    Coppel Y., Nasr K., Prigent Y., Grégoire G.
    Dental Materials 2022, 38(1), 7-18.
    https://doi.org/10.1016/j.dental.2021.10.001
    https://hal.archives-ouvertes.fr/hal-03669306

    A new Saharan strain of streptomyces sp. GSB-11 produces maculosin and N-acetyltyramine active against multidrug-resistant pathogenic bacteria
    Driche E. H., Badji B., Bijani C., Belghit S., Pont F., Mathieu F., Zitouni A.
    Current Microbiology 2022, 79(10), 298/1-10.
    https://doi.org/10.1007/s00284-022-02994-3
    https://hal.archives-ouvertes.fr/hal-03789449

    Hybrid polymeric micelles stabilized by gallium ions: Structural investigation
    Gineste S., Lonetti B., Yon M., Giermanska J., Di Cola E., Sztucki M., Coppel Y., Mingotaud A.-F., Chapel J.-P., Marty J.-D., Mingotaud C.
    Journal of Colloid and Interface Science 2022, 609, 698-706.
    https://doi.org/10.1016/j.jcis.2021.11.077
    https://hal.archives-ouvertes.fr/hal-03630399

    Fac-to-mer isomerization triggers hydride transfer from Mn(I) complex fac-[(dppm)Mn(CO)3H]
    Osipova E. S., Gulyaeva E. S., Kireev N. V., Kovalenko S. A., Bijani C., Canac Y., Valyaev D. A., Filippov O. A., Belkova N. V., Shubina E. S.
    Chemical Communications 2022, 58(32), 5017-5020.
    http://dx.doi.org/10.1039/D2CC00999D
    https://hal.archives-ouvertes.fr/hal-03652224

    Nano-structuration of WO3 nanoleaves by localized hydrolysis of an organometallic Zn precursor: Application to photocatalytic NO2 abatement
    Castello Lux K., Fajerwerg K., Hot J., Ringot E., Bertron A., Collière V., Kahn M. L., Loridant S., Coppel Y., Fau P.
    Nanomaterials 2022, 12(24), 4360/1-20.
    https://doi.org/10.3390/nano12244360
    https://hal.science/hal-03965121

    3R-TaS2 as an intercalation-dependent electrified interface for hydrogen reduction and oxidation reactions
    Ghorbani Shiraz H., Ullah Khan Z., Péré D., Liu X., Coppel Y., Fahlman M., Berggren M., Chmielowski R., Kahn M. L., Vagin M., Crispin X.
    The Journal of Physical Chemistry C 2022, 126(40), 17056-17065.
    https://doi.org/10.1021/acs.jpcc.2c04290
    https://hal.archives-ouvertes.fr/hal-03877013

    Design of anti-infectious agents from lawsone in a three-component reaction with aldehydes and isocyanides
    Koumpoura C. L., Nguyen M., Bijani C., Vendier L., Salina E. G., Buroni S., Degiacomi G., Cojean S., Loiseau P. M., Benoit-Vical F., García-Sosa A. T., Robert A., Baltas M.
    ACS Omega 2022, 7(40), 35635-35655.
    https://doi.org/10.1021/acsomega.2c03421
    https://hal.archives-ouvertes.fr/hal-03818601

    Synthesis and antimalarial activities of new hybrid Atokel molecules
    Li Y., Loureiro A., Nguyen M., Laurent M., Bijani C., Benoit-Vical F., Robert A., Liu Y., Meunier B.
    ChemistryOpen 2022, 11(5), e202200064/1-20.
    https://doi.org/10.1002/open.202200064
    https://hal.archives-ouvertes.fr/hal-03681793

    2021

    Characterization of hydrogenated dentin components by advanced 1H solid-state NMR experiments
    Coppel Y., Prigent Y., Grégoire G.
    Acta Biomaterialia 2021, 120, 156-166.
    https://doi.org/10.1016/j.actbio.2020.08.022
    https://hal.archives-ouvertes.fr/hal-03202730v1

    Spray-drying-derived amorphous calcium phosphate: a multi-scale characterization
    Le Grill S., Soulie J., Coppel Y., Roblin P., Lecante P., Marsan O., Charvillat C., Bertrand G., Rey C., Brouillet F.
    Journal of Materials Science 2021, 56(2), 1189-1202.
    https://doi.org/10.1007/s10853-020-05396-7
    https://hal.archives-ouvertes.fr/hal-03141573

    A combined theoretical/experimental study highlighting the formation of carbides on Ru nanoparticles during CO hydrogenation
    Moraru I.-T., Martínez-Prieto L. M., Coppel Y., Chaudret B., Cusinato L., Del Rosal I., Poteau R.
    Nanoscale 2021, 13(14), 6902-6915.
    http://dx.doi.org/10.1039/D0NR08735A
    https://hal.archives-ouvertes.fr/hal-03202748v1

    Oxidation-promoted synthesis of ferrocenyl planar chiral rhodium(III) complexes for C–H functionalization catalysis
    Cabanes J., Odnoroh M., Duhayon C., Bijani C., Sournia-Saquet A., Polia R., Labande A.
    Mendeleev Communications 2021, 31(5), 620-623.
    https://doi.org/10.1016/j.mencom.2021.09.010
    https://hal.archives-ouvertes.fr/hal-03412564

    Amphiphilic polymeric nanoreactors containing Rh(i)–NHC complexes for the aqueous biphasic hydrogenation of alkenes
    Salomon Sambou S., Hromov R., Ruzhylo I., Wang H., Allandrieu A., Sabatier C., Coppel Y., Daran J.-C., Gayet F., Labande A., Manoury E., Poli R.
    Catalysis Science & Technology 2021, 11, 6811-6824
    http://dx.doi.org/10.1039/D1CY00554E
    https://hal.archives-ouvertes.fr/hal-0317189

    Synthesis and reactivity of phosphine borohydride compounds
    Ayyappan R., Coppel Y., Vendier L., Ghosh S., Sabo-Etienne S., Bontemps S.
    Chemical Communications 2021, 57(3), 375-378.
    http://dx.doi.org/10.1039/D0CC07072F
    https://hal.archives-ouvertes.fr/hal-03149993

    Anisotropic growth of ZnO nanoparticles driven by the structure of amine surfactants: the role of surface dynamics in nanocrystal growth
    Wang Y., Coppel Y., Lepetit C., Marty J.-D., Mingotaud C., Kahn M. L.
    Nanoscale Advances 2021, 3(21), 6088-6099.
    http://dx.doi.org/10.1039/D1NA00566A
    https://hal.archives-ouvertes.fr/hal-03353368

    Nanocatalysts for high selectivity enyne cyclization: Oxidative surface reorganization of gold sub-2-nm nanoparticle networks
    Nasrallah H. O., Min Y., Lerayer E., Nguyen T.-A., Poinsot D., Roger J., Brandès S., Heintz O., Roblin P., Jolibois F., Poteau R., Coppel Y., Kahn M. L., Gerber I. C., Axet M. R., Serp P., Hierso J.-C.
    JACS Au 2021, 1(2), 187-200.
    https://doi.org/10.1021/jacsau.0c00062
    https://hal.archives-ouvertes.fr/hal-03129914

    Trainings

    Within the framework of the « Midi-Pyrénées » NMR network, we offer two NMR training courses through the « CNRS Formation Entreprise » organization (in French):
    NMR analysis: acquisition, processing and interpretation (NMR analysis)
    NMR for chemistry and biochemistry: advanced (advanced)

    Each year, the NMR facility provides NMR training to the doctoral school of material sciences at the Paul Sabatier University of Toulouse (in English).

    LCC

    Laboratoire de chimie de coordination du CNRS

    205 route de Narbonne, BP 44099
    31077 Toulouse cedex 4
    France

    + 33 5 61 33 31 00