Loading Events

« All Events

Seminar Pr Frederik R. Wurm

26 September de 11:00 - 12:00

Pr Frederik R. Wurm

Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands.
Email: frederik.wurm@utwente.nl

Biodegradable Polyphosphoesters: From Biomedical Imaging to Agrochemical Delivery

PPEs are typically synthesized via ring-opening polymerization (ROP) of cyclic monomers, offering precise control over molecular weight, dispersity, and end-group functionality. This versatility in synthesis allows for the design of polymers with tailored properties, such as degradability, hydrophilicity, and biocompatibility. Our group has extensively explored the synthesis of novel PPEs, including those incorporating bioactive moieties and those designed for specific applications such as drug delivery and tissue engineering. One of our key areas of research has focused on the development of PPEs for biomedical imaging using 31P MRI. The inherent phosphorus centers in the polymer backbone allows for magnetic resonance imaging (MRI).

General Structure of a polyphosphoester and chemical versatility.

In this presentation, I will introduce our recent work on asymmetric copper and silver catalysis using chiral prolinol–phosphine ligands, including analysis by DFT calculations to acquire knowledge on the reaction pathways.1 In particular, I will discuss in detail a copper-catalyzed asymmetric aldol reaction employing sterically demanding dialkyl ketones as electrophiles.2 Insights obtained from DFT calculations were fed back into ligand design, leading to the development of a catalyst system that proceeds with high yields and excellent stereoselectivity.

Beyond biomedical applications, PPEs show promise in controlled release formulations for agrochemicals. By encapsulating pesticides or fertilizers within PPE matrices, we can achieve sustained release, minimizing environmental impact. Our research has explored the use of PPEs to encapsulate and deliver agrochemicals, such as fungicides, into vesicular and highly porous structures demonstrating controlled release profiles and enhanced efficacy.

In summary, polyphosphoesters represent a promising class of biodegradable polymers with a wide range of applications. Our research has demonstrated the versatility of PPEs in various fields, from biomedical imaging to agrochemical delivery. Continued research and development in this area will pave the way for the creation of innovative and sustainable solutions in healthcare, agriculture, and other critical sectors.

Details

Date:
26 September
Time:
11:00 - 12:00
Event Category:

Organiser

Dr Eric Manoury
Email
eric.manoury(at)lcc-toulouse.fr

Venue

Salle Gallais, LCC
205 Rte de Narbonne
Toulouse, Midi-Pyrénées 31400 France
+ Google Map
View Venue Website
Laboratoire de Chimie de Coordination
Privacy Policy

To improve your browsing experience. Cookies provide information on how the site is used: statistics such as the number of visitors, the average length of visits or the number of pages viewed. On the other hand, disabling cookies may prevent you from using certain features, such as sharing content via social networks.
By clicking "Accept", you agree to the use of cookies from this site and to our privacy policy.

You can adjust all your cookie settings by navigating the tabs on the left.